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ABSTRACT 

This study presents a novel multi-component approach that combines core-based laboratory triaxial ultrasonic velocity (TUV) 

experiments, field measurements, machine learning (ML) models, and physics-based finite element simulations to characterize in-situ 

principal stresses near a geothermal well. Laboratory TUV experiments were conducted on core samples from well 16A(78)-32 at Utah 

FORGE under true-triaxial stress conditions to establish velocity-to-stress relationships. These relationships were then used to develop 

ML models that predict near-field stresses based on sonic logging data. While the ML predictions successfully estimate the three principal 

stresses, near-wellbore stress concentrations and thermo-poro-elastic disturbances induced by drilling and pre-cooling significantly 

influence the results. To address this, we coupled the ML derived stresses with a physics-based thermo-poro-mechanical finite element 

model to translate near-field stresses into far-field stresses. Simulations account for realistic pre-cooling and warmup scenarios, material 

properties, and boundary conditions to quantify stress evolution near geothermal wells. Results demonstrate the critical impact of thermal 

effect on stress distributions, with notable stress variations observed near the borehole that diminish radially. Moreover, thermo-poro-

mechanical effect amplifies the difference between the two horizontal principal stresses in the near-field. Therefore, the undisturbed far-

field stresses are generally more isotropic than near-field predictions. The integration of laboratory and field measurements, ML 

predictions, and physics-based modeling provides a robust framework for accurately characterizing far-field stresses in geothermal 

reservoirs. The findings have significant implications for the development and optimization of enhanced geothermal systems and other 

subsurface energy applications. 

1. INTRODUCTION 

Estimating in-situ stress in subsurface rock formations is critical for various energy and geotechnical applications, including hydraulic 

fracturing, wellbore stability, and geothermal energy exploitation (Zang and Stephansson, 2009). Traditional field-based stress 

measurement techniques, such as injection tests and thermo-poro-mechanical models, face significant limitations. These methods are often 

costly, time-intensive, and provide stress data only at discrete depths rather than continuous profiles. Moreover, indirect methods for 

determining maximum horizontal stress rely on constitutive assumptions with certain restrictions. These challenges are further exacerbated 

in geothermal reservoirs. In-situ stress testing is particularly difficult to perform and interpret in enhanced geothermal systems (EGS) 

because of the extreme temperatures that complicate measurements and require specialized and expensive equipment. This necessitates 

the use of specialized equipment and/or pre-cooling of a wellbore, both of which can increase operating costs and, in the case of pre-

cooling, cause a thermal stress disturbance that complicates data interpretation (Lu et al., 2024a).  

To overcome these limitations, there is a growing need for reliable, cost-effective stress characterization methods that can provide 

continuous profiles along the entire depth of a wellbore. Recent advancements in artificial intelligence (AI) and machine learning (ML) 

offer promising alternatives. By integrating ML technologies, Mustafa et al. (2024) utilized a data-driven approach to predict subsurface 

features and stresses based on logging data. The predicative ML model, trained by laboratory triaxial ultrasonic velocity (TUV) data 

(Bunger et al., 2024), effectively captured the constitutive relationship between the slowness of three ultrasonic waves - compressional 

(P-)wave and fast and slow shear (S-)waves - and the applied principal stresses in rock samples. The optimized models were then applied 

to field sonic log data to predict the three principal stresses sequentially. Complementing this data-driven approach, a physics-based finite 

element model was constructed in Abaqus to simulate the stress field near an EGS well (Lu et al., 2024b). This model accounts for critical 

thermo-poro-mechanical effects associated with thermal and pore pressure diffusion during operations like drilling and borehole pre-

cooling circulations. Notably, the results highlight significant thermal stress alterations caused by extensive pre-cooling operations. 

In this study, we present a novel multi-component approach that integrates all the above-mentioned methods (i.e., core-based laboratory 

TUV testing, field measurements, ML techniques, and physics-based modeling) for characterizing the magnitude of in-situ stresses near 

a geothermal well. Central to our methodology is the so-called velocity-to-stress correlation in rocks (Sinha and Kostek, 1996; Prioul et 

al., 2004). Both field evidence and lab measurements indicate the presence of stress-induced wave speed anisotropy in FORGE rocks 

(Bunger et al., 2024). The differences in the in-situ principal stresses would lead to varying wave velocities depending on the wave type, 

propagation direction, and polarity relative to the principal stress orientations. The core-based laboratory TUV testing builds on this 
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understanding by leveraging rocks’ stress dependence of wave velocities to generate a robust dataset for developing optimized ML models. 

Unlike prior studies constrained by specific constitutive laws, the large amount of testing data ensures the development of reliable ML 

models to determine the velocity-to-stress correlation given the wave speeds in certain rock types using well log data. Physics-based 

modeling further extends the near-field stress predictions to far-field while incorporating thermo-poro-elastic stress disturbances. Using 

this integrated approach, we characterize the stress distribution at well 16A(78)-32 of Utah FORGE EGS project, providing a 

comprehensive framework for in-situ stress estimation in complex geothermal reservoirs. 

2. METHODOLOGY 

The methodology is divided into three main steps: (1) conducting core-based TUV experiments, (2) developing and applying velocity-to-

stress ML models to estimate near-field principal stresses, and (3) utilizing physics-based finite element model to characterize far-field 

stresses under significant thermo-poro-mechanical effects. The overall workflow is summarized in Figure 1. 

 

Figure 1: Workflow of the multi-component approach for characterizing in-situ stresses. 

2.1 Core-based Laboratory TUV Experiment 

Our approach begins with laboratory TUV experiments, which measured three acoustic velocities – P-wave, fast S-wave, and slow S-

wave - under various true-triaxial stress conditions. Cubic rock samples (2.5 inches) from granitoid and gneiss formations of well 16A(78)-

32 were precision-cut, ground, and saturated before applying confining stresses (Figure 1(a)). The experiments were performed using a 

hydraulic piston-actuated loading cell to apply true-triaxial confining stresses (with all three axes independently controlled). Initial 

hydrostatic loading up to 20 MPa was applied to prevent damage, followed by controlled deviatoric stress perturbations to obtain wave 

velocities under varying stress states.  

Ultrasonic waves were generated and recorded by an active acoustic array consisting of three source-receiver sensor pairs (Olympus 

V153-RM ultrasonic transducers) in all tests, with each pair aligned with one of the three orthogonal directions (x, y, z in Figure 1(a)). To 

ensure proper contact and minimize damage, the transducers were coupled to the rock using glucose and rubber pads. Waveform data 

were recorded at a sampling rate of 10 MHz. These source-receiver pairs allowed us to measure the wave speed of the signals travelling 

between two facing source-receiver transducers. Specifically, the P-wave and both fast and slow S-wave velocities (presumably mutually 

orthogonal) were extracted from waveforms, with careful distinction between fast and slow S-wave polarities achieved by rotating the 

transducers by 90˚. This setup enabled the measurement of nine unique wave velocities for each stress condition, providing a robust dataset 

for subsequent analysis.  

The premise of the TUV experiments is that stress anisotropy in subsurface rocks (i.e., difference in the three in-situ principal stresses) 

induces variations in wave velocities. Typically, wave velocities increase with rising stress levels. To distinguish between the two shear 

waves under a stress state of 𝑆𝑥 < 𝑆𝑦 < 𝑆𝑧, the fast and slow S-waves (propagating along 𝑧-axis) exhibit polarities aligned with the y- and 

x-axes, respectively (Figure 1(a)). By systematically measuring wave velocities under controlled stress states, the velocity-to-stress 

relationship of the tested rocks can be determined. 

 



Lu et al. 

 3 

2.2 Predictive Velocity-to-Stress ML Model for Near-Field Stresses 

Observations from core-based wave velocity measurements revealed close agreement with values obtained from sonic logs (Bunger et al., 

2024). Taking advantage of these findings, we developed ML models using TUV test results and applied them to field logging data from 

Utah FORGE to estimate the near-field principal stresses (the minimum, intermediate, and maximum stresses) where sonic logging was 

conducted. Waveform data for all three wave types were analyzed, with first arrivals manually picked to ensure precision given the subtle 

velocity variations under stress. P-wave arrivals were identified at the initial upward inflection of the signal (Txx in Figure 1(b)), while S-

wave arrivals were determined using consistent crossings of a pre-set threshold (Txy in Figure 1(b)). The slowness (the inverse of velocity, 

denoted by hij, in which i defines the wave propagation direction, and j indicates the signal polarity) for all three waves was calculated 

based on their travel times within the rock samples. 

Supervised and unsupervised ML techniques were then applied to construct predictive models for assessing the in-situ stresses near a 

geothermal well. First, lab TUV data served as training inputs for the ML algorithms. Specifically, datasets comprising 41 TUV 

experiments on samples from well 16A(78)-32 were utilized to develop ML prediction models tailored to each well. Three input features, 

including hzz, hzx, and hzy, were selected for training and testing/validating ML models for the vertical stress 𝑆𝑧. Then, the applied 𝑆𝑧 was 

incorporated as an input feature, along with hzz, hzx, and hzy, to train ML models for predicting the two orthogonal horizontal principal 

stresses corresponding to the fast and slow S-wave polarities, 𝑆𝑥 and 𝑆𝑦.  

This sequential workflow reflects the relevance of vertical stress (derived from gravitational and overburden forces) to the magnitude of 

horizontal stresses. Although slowness for all nine wave paths (one P- and two S-waves along each orthogonal direction) was measured, 

only the three slowness components (hzz, hzx, and hzy in the case of a vertical well interval) corresponding to axial (z direction) wave 

propagation were used to develop the ML models. This approach aligns with the data available from sonic logging, which measures wave 

velocities in the axial direction of the wellbore. 

An example of the Artificial Neural Network (ANN) architecture used in this study is shown in Figure 1(b). Key input features included 

ultrasonic wave slowness, while hyperparameters were optimized using grid search and k-fold cross-validation. The ANN model exhibited 

excellent predictive performance, achieving high accuracy and minimal error across all stress components. Additionally, unsupervised K-

Means clustering was then employed to group subsurface rocks into distinct facies based on logging measurements such as gamma ray, 

porosity, and bulk density (Figure 1(c)). These clusters provided valuable insight into the geological structure/stratigraphic features of the 

vertical interval of the geothermal well. Finally, the trained ML models were applied to field logging data to predict local (near-field) 

principal stresses with high precision. 

2.3 Physics-Based Model for Characterizing Far-Field Stresses Under Varying Thermo-Poro-Mechanical Conditions 

It is worth noting that the ML model described earlier does not explicitly account for in-situ conditions, such as drilling and pre-cooling 

activities, as it assumes an intact rock formation without stress perturbations. However, sonic logging is conducted near the well, where 

strong poro-elastic stress alterations exist due to drilling. Furthermore, extensive circulation of cold fluid along the wellbore interval is 

often necessary for preventing downhole equipment used in well logging from overheating. These two major factors can interact (either 

amplifying or mitigating one another depending on the specific in-situ conditions) to significantly alter the near-wellbore stress field, 

potentially leading to misinterpretation of the in-situ stresses (Lu et al., 2024b). We will refer to these stress alterations as the induced 

thermo-poro-mechanical effect on the geothermal well. As a result, ML predictions may reflect the locally disturbed stresses caused by 

drilling and pre-cooling, rather than the true far-field confining stresses. Hence, it is necessary to model the thermo-poro-mechanical 

effects in the near-field and translate the stress field from the disturbed zone to the undisturbed far-field for accurate interpretation of 

logging data. 

A schematic of a vertical wellbore drilled in a porous rock under stress and temperature boundary conditions (B.C.s) in 3D is shown in 

Figure 1(d). The problem is characterized by constant wellbore pressure and temperature along an interval of the well with radius, 𝑟𝑤. The 

wellbore is surrounded by a formation subjected to the minimum, intermediate, and maximum far-field principal compressive stresses 

(𝑆ℎmin < 𝑆𝐻max < 𝑆𝑣). The constant temperature, 𝑇𝑤, is imposed at the borehole wall during pre-cooling, while the reservoir has a uniform 

initial temperature, 𝑇0, and remains constant in far-field throughout the process. We denote the drop of temperature as Δ𝑇 = 𝑇𝑤 − 𝑇0. 

Once pre-cooling stops (at 𝑡 = 𝑡𝑐), the temperature boundary condition is removed, and the temperature field during both pre-cooling and 

the following warmup (at an arbitrary time 𝑡 = 𝑡𝑐 + 𝑡𝑤) stages can be solved by the finite element model (see an illustration of the 

temperature evolution on the borehole wall in Figure 1(d)). In addition, the reservoir is subjected to a uniform virgin pore pressure, 𝑝0. 

Due to the excavation of the well, a constant mud pressure, 𝑝𝑤, is uniformly distributed along the borehole wall, resulting in a pressure 

difference, Δ𝑝 = 𝑝𝑤 − 𝑝0. Consequently, the drilling/pre-cooling disturbed stress field is determined by (1) three far-field stresses, (2) 

mud pressure and pore pressure, and (3) thermal conditions during pre-cooling/warmup.  

In the near-field, we adopted a cylindrical coordinate system (Figure 1(d)) defined by radius r, angle with respect to the minimum 

horizontal stress direction, 𝜃, and axial depth z. Using this system, we calculated the three principal stress components predicted by the 

ML models: radial stress (𝜎𝑟𝑟), tangential stress (𝜎𝜃𝜃 ), and the axial stress (𝜎𝑧𝑧). In this work, we imposed that the sonic logging 

measurements are taken at a location of 𝑟 = 4𝑟𝑤 (Figure 1(d)), a distance deemed appropriate based on the configuration of the ThruBit 

(through-the-bit) logging device utilized in well 16A(78)-32. Thanks to its linearity, the problem was decomposed into three distinct 

components for analysis: 

I. Near-wellbore stress concentration: Resulting from excavation under mud pressure and far-field stresses. 

II. Poro-elastic stresses: Induced by pore pressure diffusion near the well. 

III. Thermally induced stresses: Generated by heat conduction during pre-cooling and warm-up.  
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We then used linear superposition to compute the total thermo-poro-elastic stresses (tension positive), written as 

I II III                (1) 

Note that this linear superposition is valid under one important assumption: the thermally induced pore pressure in part III (not the pore 

pressure diffusion in part II) is negligible compared to all stress components in Equation 1, which has been verified by Lu et al. (2024b). 

Both drilling induced stress concentration (𝜎I) under the mud pressure (𝑝𝑤) and three far-field stresses (𝑆ℎmin, 𝑆𝐻max, and 𝑆𝑣), and the 

poro-elastic stresses (𝜎II) due to pressure diffusion can be solved using semi-analytical solutions (e.g., Cheng, 2016; Gao et al., 2016). 

For 𝑆I, the three stress components can be computed by 
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2
, 𝑆0 =

𝑆𝐻max−𝑆ℎmin

2
, and 𝜈 is the Poisson’s ratio. Generally, ThruBit logging is conducted after the well has been 

drilled. The delay can be a few hours. Hence, we used the transient solutions for computing the poro-elastic stresses (part II). Given the 

constant pressure B.C.s (𝑝 = 𝑝𝑤 at borehole wall and 𝑝 = 𝑝0 in the far-field), the stresses and pore pressure were obtained in Laplace 

transform domain, denoted by 𝑆̃II and 𝑝II. Their values are given by (Cheng, 2016) 
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where 𝑟∗ =
𝑟

𝑟𝑤
, 𝑠∗ =

𝑟𝑤
2𝑠

𝑐
 with s denoting the Laplace transform parameter, η and c are the poro-elastic stress coefficient and the 

consolidation coefficient, and K0  and K1  denote the modified Bessel function of the second kind of order 0 and 1, respectively. A 

numerical inversion method (Stehfest, 1970) was applied to evaluate the stress components in Equations 3(a,b,c). The overall pressure 

was then computed by 𝑝II = 𝑝Δ
II + 𝑝0. In addition, the axial stress under the plane-strain condition is expressed as 

    II II II II
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in which α is the Biot effective stress coefficient, computed by 𝛼 =
2𝜂(1−𝜈)

1−2𝜈
. It is worthwhile to note that the ML stress predictions at well 

16A(78)-32 are based on logging data collected along a vertical section of the well, including the compressional P-wave and fast and slow 

shear S-wave velocities under stress induced anisotropy in the surrounding rock. In this case, all waves propagate along the axial direction 

of the well, and the two shear waves polarize orthogonally to the well axis. Thus, ML predicted near-field principal stresses (𝑆1, 𝑆2 and 

𝑆3) correspond to the vertical and two mutually orthogonal horizontal stresses (𝜎𝑧𝑧, 𝜎𝑟𝑟 and 𝜎𝜃𝜃), and Equations 1-3 are valid for our 

thermo-poro-elastic stress analysis of 16A(78)-32. For an inclined well, stress transformation is needed. 

Next, the finite element model was developed in Abaqus to compute the radial heat conduction and its induced thermal stresses, 𝜎III. Two 

subproblems were solved sequentially: 

Subproblem 1: Pre-cooling and warmup lead to temperature change near the borehole. To model the heat transfer from the borehole to 

the reservoir, the cold fluid circulation, characterized by constant temperatures at borehole wall (𝑇 = 𝑇𝑤 at 𝑟 = 𝑟𝑤) and far-field (𝑇 = 𝑇0 
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at 𝑟 =2.5 m), begins at 𝑡 = 0 and ends at 𝑡𝑐. The warmup duration with fixed far-field temperature (𝑇0) is characterized by 𝑡𝑤 (Figure 

1(d)). 

Subproblem 2: After obtaining the temperature field associated with pre-cooling/warmup, we then imposed this temperature distribution 

as a pre-defined field variable in a thermo-mechanical problem setup. The resulting thermo-elastic stress fields caused by heat transfer in 

reservoir was then computed. 

The problem of pre-cooling/warmup induced stresses surrounding a circular wellbore was solved using a one-way coupled setup (heat 

transfer causes mechanical deformation but the deformation in rocks does not affect the temperature distribution). The entire problem was 

modeled in a 2.5-m radius circular domain (Figure 2). Mesh in areas near the borehole was refined to capture the expected sharp 

stress/strain gradient. A total of 19,521 nodes and 6,400 elements were generated. For the heat transfer subproblem 1, the heat transfer 

was modeled with DC2D8 elements (8-node quadratic heat transfer quadrilateral element). For the thermo-mechanical subproblem 2, we 

used CPE8 (8-node biquadratic plane strain quadrilateral element). 

  

Figure 2: Mesh and B.C.s of both subproblems generated in Abaqus. 

3. RESULTS 

3.1 ML Predictions for Near-Field Principal Stresses  

TUV data from core samples were used to train and test the ML models. Rock facies were determined using the rock properties obtained 

from well logging, including neutron porosity (NPHI), gamma ray (GR), and bulk density (ρ). An example of these measurements, along 

with wave slownesses, within the depth interval of 5,000-6,000 ft at well 16A(78)-32 is displayed in Figure 3(a). A total of five rock facies 

were found within this interval, indicating the heterogeneous nature of subsurface rock formations (more details are provided in Mustafa 

et al., 2024). The near-wellbore principal stresses were predicted by the ANN models using same logging data from the vertical section 

(Figure 3(b)). The predicted stresses were compared with field estimation of the in-situ stresses. The ML predicted maximum compressive 

stress 𝑆1 was compared with bulk density gradient‐based vertical stress, whereas the intermediate and minimum compressive stresses 

(𝑆2 and 𝑆3) were compared with field estimation of the maximum and minimum horizontal stresses based on elastic geomechanical model, 

respectively.  

As discussed in Section 2, strong near-wellbore stress concentration and thermo-poro-elastic stress disturbance are likely present at the 

time and location of logging data collection. Consequently, the three principal stresses predicted by the ML model using the log data in 

near-field need to be translated to the far-field stresses (𝑆ℎmin, 𝑆𝐻max, and 𝑆𝑣) using physics-based modeling through thermo-poro-

mechanical coupling under the relevant in-situ conditions. Despite these complexities, comparisons show that the ML predicted stresses 

align closely with the vertical stress inferred from the bulk density gradient and the horizontal stresses derived from elastic geomechanical 

models, particularly at depths where core samples were extracted and tested in TUV experiments (indicated by green circles in Figure 

3(b)). The ML predicted stresses at two locations of extracted core samples (depths 5,474 and 5,850 ft) are summarized in Table 1. 
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Figure 3: Measurements from well logging at 16A(78)-32 (a) and ML predicted near-field principal stresses (b), noting that 

prediction in the grey shaded zones are not valid because the model was not trained on rock type from that zone. 

Table 1: Principal stresses by ML models for well 16A(78)-32 and wellbore and virgin pore pressure used in the numerical model. 

The location with superscript (*) was investigated in the thermo-poro-elastic stress analysis. 

Ture vertical depth  5,474 ft (#1)  5,850 ft* (#2) 

ML predicted maximum stress (𝑆1) 41 MPa 43.1 MPa 

ML predicted intermediate stress (𝑆2) 31 MPa 34.2 MPa 

ML predicted minimum stress (𝑆3) 27.1 MPa 29 MPa 

Wellbore pressure (𝑝𝑤) (mud weight 9.5 ppg) 18.7 MPa 19.9 MPa 

Virgin pore pressure (𝑝0) 16.4 MPa 17.5 MPa 

3.2 Characterizing Far-Field Stress Fields by Physics-Based Modeling  

To account for the impact of near-wellbore thermo-poro-elastic stress alterations, we then imposed the ML predictions as the near-field 

stresses (at 𝑟 = 4𝑟𝑤) and solved for the far-field stresses under varying drilling/pre-cooling conditions. To demonstrate the induced 

thermo-poro-mechanical effects, we studied the stresses at one location (#2) with the depth of 5,850 ft (Table 1). The stress analysis 

incorporated realistic material properties of granitic rocks and considered both pre-cooling and warmup scenarios, as outlined in Table 2. 

Specifically, we investigated a scenario involving a 10-hour pre-cooling circulation conducted after the borehole was drilled with a 

temperature drop of 40 ˚C (𝑇0 − 𝑇𝑤), followed by a waiting (warmup) period lasting up to 4 hours. Logging activities were assumed to 

take place either immediately following the pre-cooling stage or at the end of the 4-hour warmup phase (corresponding to a total elapsed 

time of 14 hours after drilling). 

Table 2: Input parameters. 

Young’s modulus (E) 37.5 GPa 

Poisson’s ratio (𝜈) 0.25 

Density (𝜌) 2710 kg/m3 

Thermal conductivity (kT) 2.5 W/(m·K) 

Volumetric thermal expansion coefficient (𝛽𝑑) 8×10-6 K-1 

Consolidation coefficient (c) 2.15×10-5 m2/s 

Poro-elastic stress coefficient (η) 0.08 
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Biot effective stress coefficient (α) 0.24 

Reservoir temperature (𝑇0) 150 ˚C 

Pre-cooling temperature (𝑇𝑤) 110 ˚C 

Pre-cooling duration (𝑡𝑐) 10 hours 

Warmup duration (𝑡𝑤) 4 hours 

Wellbore radius (𝑟𝑤) 0.12 m 

3.2.1 Determining the location with largest stress-induced wave speed anisotropy 

All three components of the thermo-elastic stresses (𝜎𝜃𝜃
III, 𝜎𝑟𝑟

III, and 𝜎𝑧𝑧
III obtained in Abaqus simulations) exhibit axisymmetry due to the 

radial nature of heat conduction, resulting in their independence from the angular coordinate, 𝜃. Making use of this symmetry, we modeled 

a quarter of the circular domain. Two drilling/pre-cooling scenarios were explored - 10-hour pre-cooling followed by 4-hour warmup. 

Figure 4 displays the distributions of the temperature and 𝜎𝑥𝑥
III at the end of both stages. While 𝜎𝑧𝑧

III was obtained directly from Abaqus 

simulations, 𝜎𝜃𝜃
III and 𝜎𝑟𝑟

III were determined using the relationships: 𝜎𝜃𝜃
III = 𝜎𝑥𝑥

III (𝜃 =
𝜋

2
) and 𝜎𝑟𝑟

III = 𝜎𝑥𝑥
III(𝜃 = 0). 

 

Figure 4: Distribution of temperature (a) and 𝝈𝒙𝒙
𝐈𝐈𝐈  (b) at the end of pre-cooling and warmup periods. 

Additionally, poro-elastic stresses (𝜎II) induced by radial pore pressure diffusion are also axisymmetric. Only 𝜎I (drilling induced stress 

concentration) varies with 𝜃 ∈ [0,
𝜋

2
]. The key question then became identifying the specific value of 𝜃 at a fixed distance to well (𝑟 =

4𝑟𝑤) where P- and fast and slow S-waves correspond (i.e., the location that exhibits the greatest stress-induced wave speed anisotropy). 

According to Equation 2, all three stresses, 𝜎𝜃𝜃
I , 𝜎𝑟𝑟

I , and 𝜎𝑧𝑧
I , exhibit monotonic trends, either increasing or decreasing with 𝜃. Thus, the 

most pronounced stress-induced wave speed anisotropy occurs at the extreme stress values, which are recovered at either 𝜃 = 0 or 𝜃 =
𝜋

2
. 

Further investigation into the stress magnitudes using realistic far-field stress values revealed that both the least and greatest compressive 

stresses occur at 𝜃 = 0 - 𝜎𝜃𝜃
I (𝜃 = 0) < 𝜎𝑟𝑟

I (𝜃 =
𝜋

2
) < 𝜎𝜃𝜃

I (𝜃 =
𝜋

2
) < 𝜎𝑟𝑟

I (𝜃 = 0) for 𝑟 = 4𝑟𝑤 (tension positive). To summarize, values 

of the near-field stresses (𝜎𝜃𝜃, 𝜎𝑟𝑟, and 𝜎𝑧𝑧) at 𝑟 = 4𝑟𝑤, 𝜃 = 0 align with the ML predictions for the three principal compressive stresses:  

     3 2 14 , 0 , = 4 , 0 , 4 , 0 .rr w w zz wS r r S r r S r r                 

Therefore, ML predicted near-field stresses under the influences of stress concentration and axi-symmetric pore pressure diffusion and 

heat transfer were imposed at this location to solve for the entire stress field.  
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3.2.2 Translating near-field ML predictions to far-field stresses under various thermal conditions  

By imposing these ML predictions as the pre-determined near-field stresses, we solved the inverse problem to find the corresponding far-

field stresses under two scenarios: (1) logging (and its associated ML predictions) conducted immediately after a 10-hour pre-cooling 

circulation, and (2) logging performed following an additional 4-hour warmup period after the 10-hour pre-cooling (a total of 14 hours). 

The far-field principal stresses were determined by iteratively adjusting all three far-field stresses to achieve agreement with the ML 

predicted stresses in near-field for each scenario. At the depth of 5,850 ft, the near-field stresses were 𝑆3=27 MPa, 𝑆2=30.2 MPa, 𝑆1=41.1 

MPa (Table 1). The translated far-field stress values are presented in Figure 5, which compares the ML-predicted near-field stresses with 

the estimated far-field stresses. In both scenarios, the vertical stress (𝑆𝑣) in far-field is notably higher than the ML prediction (𝑆1), reflecting 

the impact of the near-field stress concentration. Additionally, both pre-cooling and warmup scenarios indicate more isotropic horizontal 

stress states compared to the ML-predicted near-field stresses. This shift toward isotropic stress states is attributed to thermally induced 

tensile stresses, which are most pronounced immediately after pre-cooling. These tensile stresses gradually dissipate during the warmup 

period. 

 

Figure 5: Comparison of ML predicted near-field stresses and translated far-field stresses in two pre-cooling scenarios. 

Figure 6 further illustrates the distribution of all three stresses along the radial trajectory of 𝜃 = 0 emanating from the borehole. Significant 

thermal effect is observed at the borehole wall, particularly in the tangential stress, 𝜎𝜃𝜃, which exhibits a variation exceeding 12 MPa 

between the pre-cooling and warmup scenarios. The impact of thermo-poro-elastic stress alterations diminishes with increasing distance 

from the borehole and becomes negligible at a radius of approximately 1 m.  

 

Figure 6: Distribution of stresses along the radial trajectory of 𝜽 = 𝟎 in two scenarios: (a) immediately after 10-hour borehole 

pre-cooling circulation, and (b) another 4-hour waiting period. ML predicted stresses in near-field (𝒓 = 𝟒𝒓𝒘) were imposed 

to solve for the three far-field stresses (𝑺𝒉𝐦𝐢𝐧, 𝑺𝑯𝐦𝐚𝐱, 𝑺𝒗) in both scenarios. 

4. CONCLUSION 

This study presents a multi-component approach for in-situ stress characterization near geothermal wells by combining lab and field data, 

ML and physics-based modeling. Lab TUV experiments establish the velocity-to-stress relationships in subsurface rocks exhibiting 
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substantial stress induced wave speed anisotropy, which enables ML models to predict near-field stresses from sonic logging data. Then, 

thermo-poro-mechanical effect, induced by near-wellbore stress concentrations and drilling/pre-cooling induced thermal stresses, is taken 

into consideration using finite element simulations to translate the ML-derived near-field principal stresses into far-field stresses. 

Our results indicate that thermal effects play a critical role in stress distribution, with significant variations in tangential stress near the 

borehole in varying drilling/pre-cooling scenarios. The thermo-poro-elastic stress alterations diminish with increasing radial distance and 

time. Additionally, thermo-poro-mechanical coupling amplifies differences between horizontal principal stresses in the near-field, while 

far-field stresses are generally more isotropic. 

This integrated framework demonstrates a robust methodology for accurate far-field stress characterization around vertically drilled 

geothermal wells and can be extended to inclined wells by appropriately transforming stress components across different orientations. 

Our findings provide critical insights for optimizing the design and development of enhanced geothermal systems and other geo-energy 

applications. 

ACKNOWLEDGEMENTS 

This work was performed at the University of Pittsburgh with funding provided by DOE EERE Geothermal Technologies Office to Utah 

FORGE and the University of Utah under Project DE-EE0007080 Enhanced Geothermal System Concept Testing and Development at 

the Milford City, Utah Frontier Observatory for Research in Geothermal Energy (Utah FORGE) site. 

REFERENCES 

Bunger, A., Higgins, J., Huang, Y., Hartz, O., and Kelley, M. (2024). Integration of triaxial ultrasonic velocity and deformation rate 

analysis for core-based estimation of stresses at the Utah FORGE geothermal site. Geothermics, 120, 103008. 

Cheng, A. H. D. (2016). Poroelasticity. Springer. 

Gao, Y., Liu, Z., Zhuang, Z., Hwang, K. C., Wang, Y., Yang, L., and Yang, H. (2016). Cylindrical borehole failure in a poroelastic 

medium. Journal of Applied Mechanics, 83(6), 061005. 

Lu, G., Kelley, M., Raziperchikolaee, S., and Bunger, A. (2024a). Modeling the impact of thermal stresses induced by wellbore cooldown 

on the breakdown pressure and geometry of a hydraulic fracture. Rock Mechanics and Rock Engineering, 57 (2024): 5935–5952. 

Lu, G., Lu, Y., Kelley, M., Raziperchikolaee, S., and Bunger, A. P. (2024b). Thermo-poro-elastic stress alteration around an EGS well 

due to cold fluid circulation. In 58th US Rock Mechanics/Geomechanics Symposium, Golden, Colorado, 23–26 June 2024. ARMA-

24-689. 

Mustafa, A., Kelley, M., Lu, G., and Bunger, A. P. (2024). An integrated machine learning workflow to estimate in situ stresses based on 

downhole sonic logs and laboratory triaxial ultrasonic velocity data. Journal of Geophysical Research: Machine Learning and 

Computation, 1(4), e2024JH000318. 

Prioul, R., Bakulin, A., and Bakulin, V. (2004). Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic 

formations: theory and laboratory verification. Geophysics, 69(2), 415–425. 

Sinha, B. K., and Kostek, S. (1996). Stress-induced azimuthal anisotropy in borehole flexural waves. Geophysics, 61(6), 1899-1907. 

Stehfest, H. (1970). Numerical inversion of Laplace transforms. Communications of the ACM, 13:47–49. 

Zang, A., and Stephansson, O. (2009). Stress field of the earth’s crust. Springer. 


